Skip to content

vllm.model_executor.models.qwen2_5_vl_hybrid

Qwen2.5-VL model with Hybrid SSM + Sliding-Window Attention support.

This module extends the Qwen2.5-VL model to use HybridAttentionLayer in its language model backbone, combining sliding-window KV cache attention with an SSM history branch for improved memory efficiency on long contexts.

To enable hybrid attention, set use_hybrid_attention: true in the model's HuggingFace config or pass it via config override.

Usage

python -m vllm.entrypoints.openai.api_server --model Qwen/Qwen2.5-VL-3B-Instruct --override-neuron-config '{"use_hybrid_attention": true}'

HybridQwen2Attention

Bases: Module

Qwen2 attention that can use either standard or hybrid attention.

When use_hybrid_attention is True in the config, this module uses HybridAttentionLayer which combines sliding-window KV cache with an SSM history branch. Otherwise, it falls back to standard Attention.

Source code in vllm/model_executor/models/qwen2_5_vl_hybrid.py
class HybridQwen2Attention(nn.Module):
    """Qwen2 attention that can use either standard or hybrid attention.

    When `use_hybrid_attention` is True in the config, this module uses
    HybridAttentionLayer which combines sliding-window KV cache with an
    SSM history branch. Otherwise, it falls back to standard Attention.
    """

    def __init__(
        self,
        hidden_size: int,
        num_heads: int,
        num_kv_heads: int,
        rope_parameters: dict[str, Any],
        max_position: int = 4096 * 32,
        cache_config: CacheConfig | None = None,
        quant_config: QuantizationConfig | None = None,
        prefix: str = "",
        attn_type: str = AttentionType.DECODER,
        use_hybrid_attention: bool = False,
    ) -> None:
        super().__init__()
        self.hidden_size = hidden_size
        tp_size = get_tensor_model_parallel_world_size()
        self.total_num_heads = num_heads
        assert self.total_num_heads % tp_size == 0
        self.num_heads = self.total_num_heads // tp_size
        self.total_num_kv_heads = num_kv_heads
        if self.total_num_kv_heads >= tp_size:
            assert self.total_num_kv_heads % tp_size == 0
        else:
            assert tp_size % self.total_num_kv_heads == 0
        self.num_kv_heads = max(1, self.total_num_kv_heads // tp_size)
        self.head_dim = hidden_size // self.total_num_heads
        self.q_size = self.num_heads * self.head_dim
        self.kv_size = self.num_kv_heads * self.head_dim
        self.scaling = self.head_dim**-0.5

        self.qkv_proj = QKVParallelLinear(
            hidden_size,
            self.head_dim,
            self.total_num_heads,
            self.total_num_kv_heads,
            bias=True,
            quant_config=quant_config,
            prefix=f"{prefix}.qkv_proj",
        )
        self.o_proj = RowParallelLinear(
            self.total_num_heads * self.head_dim,
            hidden_size,
            bias=False,
            quant_config=quant_config,
            prefix=f"{prefix}.o_proj",
        )

        self.rotary_emb = get_rope(
            self.head_dim,
            rotary_dim=self.head_dim,
            max_position=max_position,
            rope_parameters=rope_parameters,
        )

        self.use_hybrid_attention = use_hybrid_attention

        if use_hybrid_attention:
            # SSM hyperparameters - proportional to attention dimensions
            ssm_state_size = self.head_dim
            ssm_conv_kernel_size = 4
            ssm_intermediate_size = self.hidden_size // 2

            self.attn = HybridAttentionLayer(
                num_heads=self.num_heads,
                head_size=self.head_dim,
                scale=self.scaling,
                num_kv_heads=self.num_kv_heads,
                ssm_state_size=ssm_state_size,
                ssm_conv_kernel_size=ssm_conv_kernel_size,
                ssm_intermediate_size=ssm_intermediate_size,
                cache_config=cache_config,
                prefix=f"{prefix}.attn",
            )
        else:
            self.attn = Attention(
                self.num_heads,
                self.head_dim,
                self.scaling,
                num_kv_heads=self.num_kv_heads,
                cache_config=cache_config,
                quant_config=quant_config,
                attn_type=attn_type,
                prefix=f"{prefix}.attn",
            )

    def forward(
        self,
        positions: torch.Tensor,
        hidden_states: torch.Tensor,
    ) -> torch.Tensor:
        qkv, _ = self.qkv_proj(hidden_states)
        q, k, v = qkv.split([self.q_size, self.kv_size, self.kv_size], dim=-1)
        q, k = self.rotary_emb(positions, q, k)
        attn_output = self.attn(q, k, v)
        output, _ = self.o_proj(attn_output)
        return output

attn instance-attribute

attn = HybridAttentionLayer(
    num_heads=num_heads,
    head_size=head_dim,
    scale=scaling,
    num_kv_heads=num_kv_heads,
    ssm_state_size=ssm_state_size,
    ssm_conv_kernel_size=ssm_conv_kernel_size,
    ssm_intermediate_size=ssm_intermediate_size,
    cache_config=cache_config,
    prefix=f"{prefix}.attn",
)

head_dim instance-attribute

head_dim = hidden_size // total_num_heads

hidden_size instance-attribute

hidden_size = hidden_size

kv_size instance-attribute

kv_size = num_kv_heads * head_dim

num_heads instance-attribute

num_heads = total_num_heads // tp_size

num_kv_heads instance-attribute

num_kv_heads = max(1, total_num_kv_heads // tp_size)

o_proj instance-attribute

o_proj = RowParallelLinear(
    total_num_heads * head_dim,
    hidden_size,
    bias=False,
    quant_config=quant_config,
    prefix=f"{prefix}.o_proj",
)

q_size instance-attribute

q_size = num_heads * head_dim

qkv_proj instance-attribute

qkv_proj = QKVParallelLinear(
    hidden_size,
    head_dim,
    total_num_heads,
    total_num_kv_heads,
    bias=True,
    quant_config=quant_config,
    prefix=f"{prefix}.qkv_proj",
)

rotary_emb instance-attribute

rotary_emb = get_rope(
    head_dim,
    rotary_dim=head_dim,
    max_position=max_position,
    rope_parameters=rope_parameters,
)

scaling instance-attribute

scaling = head_dim ** -0.5

total_num_heads instance-attribute

total_num_heads = num_heads

total_num_kv_heads instance-attribute

total_num_kv_heads = num_kv_heads

use_hybrid_attention instance-attribute

use_hybrid_attention = use_hybrid_attention

__init__

__init__(
    hidden_size: int,
    num_heads: int,
    num_kv_heads: int,
    rope_parameters: dict[str, Any],
    max_position: int = 4096 * 32,
    cache_config: CacheConfig | None = None,
    quant_config: QuantizationConfig | None = None,
    prefix: str = "",
    attn_type: str = DECODER,
    use_hybrid_attention: bool = False,
) -> None
Source code in vllm/model_executor/models/qwen2_5_vl_hybrid.py
def __init__(
    self,
    hidden_size: int,
    num_heads: int,
    num_kv_heads: int,
    rope_parameters: dict[str, Any],
    max_position: int = 4096 * 32,
    cache_config: CacheConfig | None = None,
    quant_config: QuantizationConfig | None = None,
    prefix: str = "",
    attn_type: str = AttentionType.DECODER,
    use_hybrid_attention: bool = False,
) -> None:
    super().__init__()
    self.hidden_size = hidden_size
    tp_size = get_tensor_model_parallel_world_size()
    self.total_num_heads = num_heads
    assert self.total_num_heads % tp_size == 0
    self.num_heads = self.total_num_heads // tp_size
    self.total_num_kv_heads = num_kv_heads
    if self.total_num_kv_heads >= tp_size:
        assert self.total_num_kv_heads % tp_size == 0
    else:
        assert tp_size % self.total_num_kv_heads == 0
    self.num_kv_heads = max(1, self.total_num_kv_heads // tp_size)
    self.head_dim = hidden_size // self.total_num_heads
    self.q_size = self.num_heads * self.head_dim
    self.kv_size = self.num_kv_heads * self.head_dim
    self.scaling = self.head_dim**-0.5

    self.qkv_proj = QKVParallelLinear(
        hidden_size,
        self.head_dim,
        self.total_num_heads,
        self.total_num_kv_heads,
        bias=True,
        quant_config=quant_config,
        prefix=f"{prefix}.qkv_proj",
    )
    self.o_proj = RowParallelLinear(
        self.total_num_heads * self.head_dim,
        hidden_size,
        bias=False,
        quant_config=quant_config,
        prefix=f"{prefix}.o_proj",
    )

    self.rotary_emb = get_rope(
        self.head_dim,
        rotary_dim=self.head_dim,
        max_position=max_position,
        rope_parameters=rope_parameters,
    )

    self.use_hybrid_attention = use_hybrid_attention

    if use_hybrid_attention:
        # SSM hyperparameters - proportional to attention dimensions
        ssm_state_size = self.head_dim
        ssm_conv_kernel_size = 4
        ssm_intermediate_size = self.hidden_size // 2

        self.attn = HybridAttentionLayer(
            num_heads=self.num_heads,
            head_size=self.head_dim,
            scale=self.scaling,
            num_kv_heads=self.num_kv_heads,
            ssm_state_size=ssm_state_size,
            ssm_conv_kernel_size=ssm_conv_kernel_size,
            ssm_intermediate_size=ssm_intermediate_size,
            cache_config=cache_config,
            prefix=f"{prefix}.attn",
        )
    else:
        self.attn = Attention(
            self.num_heads,
            self.head_dim,
            self.scaling,
            num_kv_heads=self.num_kv_heads,
            cache_config=cache_config,
            quant_config=quant_config,
            attn_type=attn_type,
            prefix=f"{prefix}.attn",
        )

forward

forward(positions: Tensor, hidden_states: Tensor) -> Tensor
Source code in vllm/model_executor/models/qwen2_5_vl_hybrid.py
def forward(
    self,
    positions: torch.Tensor,
    hidden_states: torch.Tensor,
) -> torch.Tensor:
    qkv, _ = self.qkv_proj(hidden_states)
    q, k, v = qkv.split([self.q_size, self.kv_size, self.kv_size], dim=-1)
    q, k = self.rotary_emb(positions, q, k)
    attn_output = self.attn(q, k, v)
    output, _ = self.o_proj(attn_output)
    return output

HybridQwen2DecoderLayer

Bases: Qwen2DecoderLayer

Qwen2 decoder layer with optional hybrid attention support.

Source code in vllm/model_executor/models/qwen2_5_vl_hybrid.py
class HybridQwen2DecoderLayer(Qwen2DecoderLayer):
    """Qwen2 decoder layer with optional hybrid attention support."""

    def __init__(
        self,
        config: Qwen2Config,
        cache_config: CacheConfig | None = None,
        quant_config: QuantizationConfig | None = None,
        prefix: str = "",
    ) -> None:
        # Skip parent __init__ to customize attention
        nn.Module.__init__(self)

        self.hidden_size = config.hidden_size
        set_default_rope_theta(config, default_theta=1000000)

        if getattr(config, "is_causal", True):
            attn_type = AttentionType.DECODER
        else:
            attn_type = AttentionType.ENCODER_ONLY

        # Check if hybrid attention is enabled
        use_hybrid_attention = getattr(config, "use_hybrid_attention", False)

        # Use HybridQwen2Attention instead of Qwen2Attention
        self.self_attn = HybridQwen2Attention(
            hidden_size=self.hidden_size,
            num_heads=config.num_attention_heads,
            max_position=config.max_position_embeddings,
            num_kv_heads=config.num_key_value_heads,
            cache_config=cache_config,
            quant_config=quant_config,
            rope_parameters=config.rope_parameters,
            prefix=f"{prefix}.self_attn",
            attn_type=attn_type,
            use_hybrid_attention=use_hybrid_attention,
        )

        self.mlp = Qwen2MLP(
            hidden_size=self.hidden_size,
            intermediate_size=config.intermediate_size,
            hidden_act=config.hidden_act,
            quant_config=quant_config,
            prefix=f"{prefix}.mlp",
        )

        self.input_layernorm = RMSNorm(config.hidden_size, eps=config.rms_norm_eps)
        self.post_attention_layernorm = RMSNorm(
            config.hidden_size, eps=config.rms_norm_eps
        )

hidden_size instance-attribute

hidden_size = hidden_size

input_layernorm instance-attribute

input_layernorm = RMSNorm(hidden_size, eps=rms_norm_eps)

mlp instance-attribute

mlp = Qwen2MLP(
    hidden_size=hidden_size,
    intermediate_size=intermediate_size,
    hidden_act=hidden_act,
    quant_config=quant_config,
    prefix=f"{prefix}.mlp",
)

post_attention_layernorm instance-attribute

post_attention_layernorm = RMSNorm(
    hidden_size, eps=rms_norm_eps
)

self_attn instance-attribute

self_attn = HybridQwen2Attention(
    hidden_size=hidden_size,
    num_heads=num_attention_heads,
    max_position=max_position_embeddings,
    num_kv_heads=num_key_value_heads,
    cache_config=cache_config,
    quant_config=quant_config,
    rope_parameters=rope_parameters,
    prefix=f"{prefix}.self_attn",
    attn_type=attn_type,
    use_hybrid_attention=use_hybrid_attention,
)

__init__

__init__(
    config: Qwen2Config,
    cache_config: CacheConfig | None = None,
    quant_config: QuantizationConfig | None = None,
    prefix: str = "",
) -> None
Source code in vllm/model_executor/models/qwen2_5_vl_hybrid.py
def __init__(
    self,
    config: Qwen2Config,
    cache_config: CacheConfig | None = None,
    quant_config: QuantizationConfig | None = None,
    prefix: str = "",
) -> None:
    # Skip parent __init__ to customize attention
    nn.Module.__init__(self)

    self.hidden_size = config.hidden_size
    set_default_rope_theta(config, default_theta=1000000)

    if getattr(config, "is_causal", True):
        attn_type = AttentionType.DECODER
    else:
        attn_type = AttentionType.ENCODER_ONLY

    # Check if hybrid attention is enabled
    use_hybrid_attention = getattr(config, "use_hybrid_attention", False)

    # Use HybridQwen2Attention instead of Qwen2Attention
    self.self_attn = HybridQwen2Attention(
        hidden_size=self.hidden_size,
        num_heads=config.num_attention_heads,
        max_position=config.max_position_embeddings,
        num_kv_heads=config.num_key_value_heads,
        cache_config=cache_config,
        quant_config=quant_config,
        rope_parameters=config.rope_parameters,
        prefix=f"{prefix}.self_attn",
        attn_type=attn_type,
        use_hybrid_attention=use_hybrid_attention,
    )

    self.mlp = Qwen2MLP(
        hidden_size=self.hidden_size,
        intermediate_size=config.intermediate_size,
        hidden_act=config.hidden_act,
        quant_config=quant_config,
        prefix=f"{prefix}.mlp",
    )

    self.input_layernorm = RMSNorm(config.hidden_size, eps=config.rms_norm_eps)
    self.post_attention_layernorm = RMSNorm(
        config.hidden_size, eps=config.rms_norm_eps
    )

HybridQwen2ForCausalLM

Bases: Qwen2ForCausalLM

Qwen2 for causal LM with optional hybrid attention.

This model can be loaded with standard Qwen2 weights. To enable hybrid attention, set use_hybrid_attention: true in the model config.

Source code in vllm/model_executor/models/qwen2_5_vl_hybrid.py
class HybridQwen2ForCausalLM(Qwen2ForCausalLM):
    """Qwen2 for causal LM with optional hybrid attention.

    This model can be loaded with standard Qwen2 weights. To enable hybrid
    attention, set `use_hybrid_attention: true` in the model config.
    """

    def __init__(
        self,
        *,
        vllm_config: VllmConfig,
        prefix: str = "",
    ):
        # Skip Qwen2ForCausalLM __init__ to use our HybridQwen2Model
        nn.Module.__init__(self)

        config = vllm_config.model_config.hf_config
        quant_config = vllm_config.quant_config

        self.config = config
        self.quant_config = quant_config

        # Use HybridQwen2Model instead of Qwen2Model
        self.model = HybridQwen2Model(
            vllm_config=vllm_config,
            prefix=maybe_prefix(prefix, "model"),
        )

        from vllm.distributed import get_pp_group

        from .utils import PPMissingLayer

        if get_pp_group().is_last_rank:
            if config.tie_word_embeddings:
                self.lm_head = self.model.embed_tokens
            else:
                from vllm.model_executor.layers.vocab_parallel_embedding import (
                    ParallelLMHead,
                )

                self.lm_head = ParallelLMHead(
                    config.vocab_size,
                    config.hidden_size,
                    quant_config=quant_config,
                    prefix=maybe_prefix(prefix, "lm_head"),
                )
        else:
            self.lm_head = PPMissingLayer()

        from vllm.model_executor.layers.logits_processor import LogitsProcessor

        self.logits_processor = LogitsProcessor(config.vocab_size)
        self.make_empty_intermediate_tensors = (
            self.model.make_empty_intermediate_tensors
        )

    def load_weights(self, weights: Iterable[tuple[str, torch.Tensor]]) -> set[str]:
        # Reuse parent's weight loading - hybrid layers have the same
        # weight structure for attention, the SSM adapter weights are
        # initialized randomly (for benchmarking without pretrained SSM weights)
        return super().load_weights(weights)

config instance-attribute

config = config

lm_head instance-attribute

lm_head = embed_tokens

logits_processor instance-attribute

logits_processor = LogitsProcessor(vocab_size)

make_empty_intermediate_tensors instance-attribute

make_empty_intermediate_tensors = (
    make_empty_intermediate_tensors
)

model instance-attribute

model = HybridQwen2Model(
    vllm_config=vllm_config,
    prefix=maybe_prefix(prefix, "model"),
)

quant_config instance-attribute

quant_config = quant_config

__init__

__init__(*, vllm_config: VllmConfig, prefix: str = '')
Source code in vllm/model_executor/models/qwen2_5_vl_hybrid.py
def __init__(
    self,
    *,
    vllm_config: VllmConfig,
    prefix: str = "",
):
    # Skip Qwen2ForCausalLM __init__ to use our HybridQwen2Model
    nn.Module.__init__(self)

    config = vllm_config.model_config.hf_config
    quant_config = vllm_config.quant_config

    self.config = config
    self.quant_config = quant_config

    # Use HybridQwen2Model instead of Qwen2Model
    self.model = HybridQwen2Model(
        vllm_config=vllm_config,
        prefix=maybe_prefix(prefix, "model"),
    )

    from vllm.distributed import get_pp_group

    from .utils import PPMissingLayer

    if get_pp_group().is_last_rank:
        if config.tie_word_embeddings:
            self.lm_head = self.model.embed_tokens
        else:
            from vllm.model_executor.layers.vocab_parallel_embedding import (
                ParallelLMHead,
            )

            self.lm_head = ParallelLMHead(
                config.vocab_size,
                config.hidden_size,
                quant_config=quant_config,
                prefix=maybe_prefix(prefix, "lm_head"),
            )
    else:
        self.lm_head = PPMissingLayer()

    from vllm.model_executor.layers.logits_processor import LogitsProcessor

    self.logits_processor = LogitsProcessor(config.vocab_size)
    self.make_empty_intermediate_tensors = (
        self.model.make_empty_intermediate_tensors
    )

load_weights

load_weights(
    weights: Iterable[tuple[str, Tensor]],
) -> set[str]
Source code in vllm/model_executor/models/qwen2_5_vl_hybrid.py
def load_weights(self, weights: Iterable[tuple[str, torch.Tensor]]) -> set[str]:
    # Reuse parent's weight loading - hybrid layers have the same
    # weight structure for attention, the SSM adapter weights are
    # initialized randomly (for benchmarking without pretrained SSM weights)
    return super().load_weights(weights)

HybridQwen2Model

Bases: Qwen2Model

Qwen2 model with hybrid attention layer support.

Source code in vllm/model_executor/models/qwen2_5_vl_hybrid.py
class HybridQwen2Model(Qwen2Model):
    """Qwen2 model with hybrid attention layer support."""

    def __init__(
        self,
        *,
        vllm_config: VllmConfig,
        prefix: str = "",
    ):
        # Use HybridQwen2DecoderLayer instead of Qwen2DecoderLayer
        super().__init__(
            vllm_config=vllm_config,
            prefix=prefix,
            decoder_layer_type=HybridQwen2DecoderLayer,
        )

__init__

__init__(*, vllm_config: VllmConfig, prefix: str = '')
Source code in vllm/model_executor/models/qwen2_5_vl_hybrid.py
def __init__(
    self,
    *,
    vllm_config: VllmConfig,
    prefix: str = "",
):
    # Use HybridQwen2DecoderLayer instead of Qwen2DecoderLayer
    super().__init__(
        vllm_config=vllm_config,
        prefix=prefix,
        decoder_layer_type=HybridQwen2DecoderLayer,
    )

HybridQwen2_5_VLForConditionalGeneration

Bases: Qwen2_5_VLForConditionalGeneration

Qwen2.5-VL with Hybrid SSM + Sliding-Window Attention.

This model extends Qwen2_5_VLForConditionalGeneration to use hybrid attention in the language model backbone. The vision encoder remains unchanged, while the text decoder uses HybridAttentionLayer for improved memory efficiency on long video/image contexts.

To enable hybrid attention, set use_hybrid_attention: true in the model's config or via override:

--override-neuron-config '{"use_hybrid_attention": true}'

The hybrid attention combines: 1. Sliding-window KV cache for local context 2. SSM (State Space Model) for history/long-range dependencies

Source code in vllm/model_executor/models/qwen2_5_vl_hybrid.py
@MULTIMODAL_REGISTRY.register_processor(
    Qwen2_5_VLMultiModalProcessor,
    info=Qwen2_5_VLProcessingInfo,
    dummy_inputs=Qwen2_5_VLDummyInputsBuilder,
)
class HybridQwen2_5_VLForConditionalGeneration(Qwen2_5_VLForConditionalGeneration):
    """Qwen2.5-VL with Hybrid SSM + Sliding-Window Attention.

    This model extends Qwen2_5_VLForConditionalGeneration to use hybrid
    attention in the language model backbone. The vision encoder remains
    unchanged, while the text decoder uses HybridAttentionLayer for
    improved memory efficiency on long video/image contexts.

    To enable hybrid attention, set `use_hybrid_attention: true` in the
    model's config or via override:

        --override-neuron-config '{"use_hybrid_attention": true}'

    The hybrid attention combines:
    1. Sliding-window KV cache for local context
    2. SSM (State Space Model) for history/long-range dependencies
    """

    def __init__(self, *, vllm_config: VllmConfig, prefix: str = ""):
        # Call grandparent's __init__ to set up basic attributes
        nn.Module.__init__(self)

        from transformers.models.qwen2_5_vl.configuration_qwen2_5_vl import (
            Qwen2_5_VLConfig,
        )

        config: Qwen2_5_VLConfig = vllm_config.model_config.hf_config
        multimodal_config = vllm_config.model_config.multimodal_config

        self.use_data_parallel = multimodal_config.mm_encoder_tp_mode == "data"
        self.config = config
        self.vllm_config = vllm_config
        self.multimodal_config = multimodal_config
        self.video_pruning_rate = multimodal_config.video_pruning_rate
        self.is_multimodal_pruning_enabled = (
            multimodal_config.is_multimodal_pruning_enabled()
        )

        # Set up vision encoder (same as parent)
        if multimodal_config.get_limit_per_prompt(
            "image"
        ) or multimodal_config.get_limit_per_prompt("video"):
            from vllm.attention.backends.registry import AttentionBackendEnum

            from .qwen2_5_vl import Qwen2_5_VisionTransformer

            attn_backend_override = (
                multimodal_config.mm_encoder_attn_backend
                if multimodal_config is not None
                else None
            )
            self.visual = Qwen2_5_VisionTransformer(
                vision_config=config.vision_config,
                norm_eps=getattr(config, "rms_norm_eps", 1e-6),
                quant_config=self.quant_config,
                prefix=maybe_prefix(prefix, "visual"),
                use_data_parallel=self.use_data_parallel,
                attn_backend_override=attn_backend_override,
            )
        else:
            self.visual = None

        # Use HybridQwen2ForCausalLM instead of standard Qwen2ForCausalLM
        # First, ensure use_hybrid_attention is set in the text config
        text_config = config.get_text_config()
        if not hasattr(text_config, "use_hybrid_attention"):
            text_config.use_hybrid_attention = getattr(
                config, "use_hybrid_attention", True
            )

        self.language_model = HybridQwen2ForCausalLM(
            vllm_config=vllm_config,
            prefix=maybe_prefix(prefix, "language_model"),
        )

        self.make_empty_intermediate_tensors = (
            self.language_model.make_empty_intermediate_tensors
        )

    @property
    def quant_config(self):
        return self.vllm_config.quant_config

config instance-attribute

config = config

is_multimodal_pruning_enabled instance-attribute

is_multimodal_pruning_enabled = (
    is_multimodal_pruning_enabled()
)

language_model instance-attribute

language_model = HybridQwen2ForCausalLM(
    vllm_config=vllm_config,
    prefix=maybe_prefix(prefix, "language_model"),
)

make_empty_intermediate_tensors instance-attribute

make_empty_intermediate_tensors = (
    make_empty_intermediate_tensors
)

multimodal_config instance-attribute

multimodal_config = multimodal_config

quant_config property

quant_config

use_data_parallel instance-attribute

use_data_parallel = mm_encoder_tp_mode == 'data'

video_pruning_rate instance-attribute

video_pruning_rate = video_pruning_rate

visual instance-attribute

visual = Qwen2_5_VisionTransformer(
    vision_config=vision_config,
    norm_eps=getattr(config, "rms_norm_eps", 1e-06),
    quant_config=quant_config,
    prefix=maybe_prefix(prefix, "visual"),
    use_data_parallel=use_data_parallel,
    attn_backend_override=attn_backend_override,
)

vllm_config instance-attribute

vllm_config = vllm_config

__init__

__init__(*, vllm_config: VllmConfig, prefix: str = '')
Source code in vllm/model_executor/models/qwen2_5_vl_hybrid.py
def __init__(self, *, vllm_config: VllmConfig, prefix: str = ""):
    # Call grandparent's __init__ to set up basic attributes
    nn.Module.__init__(self)

    from transformers.models.qwen2_5_vl.configuration_qwen2_5_vl import (
        Qwen2_5_VLConfig,
    )

    config: Qwen2_5_VLConfig = vllm_config.model_config.hf_config
    multimodal_config = vllm_config.model_config.multimodal_config

    self.use_data_parallel = multimodal_config.mm_encoder_tp_mode == "data"
    self.config = config
    self.vllm_config = vllm_config
    self.multimodal_config = multimodal_config
    self.video_pruning_rate = multimodal_config.video_pruning_rate
    self.is_multimodal_pruning_enabled = (
        multimodal_config.is_multimodal_pruning_enabled()
    )

    # Set up vision encoder (same as parent)
    if multimodal_config.get_limit_per_prompt(
        "image"
    ) or multimodal_config.get_limit_per_prompt("video"):
        from vllm.attention.backends.registry import AttentionBackendEnum

        from .qwen2_5_vl import Qwen2_5_VisionTransformer

        attn_backend_override = (
            multimodal_config.mm_encoder_attn_backend
            if multimodal_config is not None
            else None
        )
        self.visual = Qwen2_5_VisionTransformer(
            vision_config=config.vision_config,
            norm_eps=getattr(config, "rms_norm_eps", 1e-6),
            quant_config=self.quant_config,
            prefix=maybe_prefix(prefix, "visual"),
            use_data_parallel=self.use_data_parallel,
            attn_backend_override=attn_backend_override,
        )
    else:
        self.visual = None

    # Use HybridQwen2ForCausalLM instead of standard Qwen2ForCausalLM
    # First, ensure use_hybrid_attention is set in the text config
    text_config = config.get_text_config()
    if not hasattr(text_config, "use_hybrid_attention"):
        text_config.use_hybrid_attention = getattr(
            config, "use_hybrid_attention", True
        )

    self.language_model = HybridQwen2ForCausalLM(
        vllm_config=vllm_config,
        prefix=maybe_prefix(prefix, "language_model"),
    )

    self.make_empty_intermediate_tensors = (
        self.language_model.make_empty_intermediate_tensors
    )