vllm.model_executor.models.qwen2_5_vl_hybrid ¶
Qwen2.5-VL model with Hybrid SSM + Sliding-Window Attention support.
This module extends the Qwen2.5-VL model to use HybridAttentionLayer in its language model backbone, combining sliding-window KV cache attention with an SSM history branch for improved memory efficiency on long contexts.
To enable hybrid attention, set use_hybrid_attention: true in the model's HuggingFace config or pass it via config override.
Usage
python -m vllm.entrypoints.openai.api_server --model Qwen/Qwen2.5-VL-3B-Instruct --override-neuron-config '{"use_hybrid_attention": true}'
HybridQwen2Attention ¶
Bases: Module
Qwen2 attention that can use either standard or hybrid attention.
When use_hybrid_attention is True in the config, this module uses HybridAttentionLayer which combines sliding-window KV cache with an SSM history branch. Otherwise, it falls back to standard Attention.
Source code in vllm/model_executor/models/qwen2_5_vl_hybrid.py
50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 | |
attn instance-attribute ¶
attn = HybridAttentionLayer(
num_heads=num_heads,
head_size=head_dim,
scale=scaling,
num_kv_heads=num_kv_heads,
ssm_state_size=ssm_state_size,
ssm_conv_kernel_size=ssm_conv_kernel_size,
ssm_intermediate_size=ssm_intermediate_size,
cache_config=cache_config,
prefix=f"{prefix}.attn",
)
o_proj instance-attribute ¶
o_proj = RowParallelLinear(
total_num_heads * head_dim,
hidden_size,
bias=False,
quant_config=quant_config,
prefix=f"{prefix}.o_proj",
)
qkv_proj instance-attribute ¶
qkv_proj = QKVParallelLinear(
hidden_size,
head_dim,
total_num_heads,
total_num_kv_heads,
bias=True,
quant_config=quant_config,
prefix=f"{prefix}.qkv_proj",
)
rotary_emb instance-attribute ¶
rotary_emb = get_rope(
head_dim,
rotary_dim=head_dim,
max_position=max_position,
rope_parameters=rope_parameters,
)
__init__ ¶
__init__(
hidden_size: int,
num_heads: int,
num_kv_heads: int,
rope_parameters: dict[str, Any],
max_position: int = 4096 * 32,
cache_config: CacheConfig | None = None,
quant_config: QuantizationConfig | None = None,
prefix: str = "",
attn_type: str = DECODER,
use_hybrid_attention: bool = False,
) -> None
Source code in vllm/model_executor/models/qwen2_5_vl_hybrid.py
forward ¶
Source code in vllm/model_executor/models/qwen2_5_vl_hybrid.py
HybridQwen2DecoderLayer ¶
Bases: Qwen2DecoderLayer
Qwen2 decoder layer with optional hybrid attention support.
Source code in vllm/model_executor/models/qwen2_5_vl_hybrid.py
mlp instance-attribute ¶
mlp = Qwen2MLP(
hidden_size=hidden_size,
intermediate_size=intermediate_size,
hidden_act=hidden_act,
quant_config=quant_config,
prefix=f"{prefix}.mlp",
)
post_attention_layernorm instance-attribute ¶
post_attention_layernorm = RMSNorm(
hidden_size, eps=rms_norm_eps
)
self_attn instance-attribute ¶
self_attn = HybridQwen2Attention(
hidden_size=hidden_size,
num_heads=num_attention_heads,
max_position=max_position_embeddings,
num_kv_heads=num_key_value_heads,
cache_config=cache_config,
quant_config=quant_config,
rope_parameters=rope_parameters,
prefix=f"{prefix}.self_attn",
attn_type=attn_type,
use_hybrid_attention=use_hybrid_attention,
)
__init__ ¶
__init__(
config: Qwen2Config,
cache_config: CacheConfig | None = None,
quant_config: QuantizationConfig | None = None,
prefix: str = "",
) -> None
Source code in vllm/model_executor/models/qwen2_5_vl_hybrid.py
HybridQwen2ForCausalLM ¶
Bases: Qwen2ForCausalLM
Qwen2 for causal LM with optional hybrid attention.
This model can be loaded with standard Qwen2 weights. To enable hybrid attention, set use_hybrid_attention: true in the model config.
Source code in vllm/model_executor/models/qwen2_5_vl_hybrid.py
make_empty_intermediate_tensors instance-attribute ¶
model instance-attribute ¶
model = HybridQwen2Model(
vllm_config=vllm_config,
prefix=maybe_prefix(prefix, "model"),
)
__init__ ¶
__init__(*, vllm_config: VllmConfig, prefix: str = '')
Source code in vllm/model_executor/models/qwen2_5_vl_hybrid.py
load_weights ¶
Source code in vllm/model_executor/models/qwen2_5_vl_hybrid.py
HybridQwen2Model ¶
Bases: Qwen2Model
Qwen2 model with hybrid attention layer support.
Source code in vllm/model_executor/models/qwen2_5_vl_hybrid.py
__init__ ¶
__init__(*, vllm_config: VllmConfig, prefix: str = '')
Source code in vllm/model_executor/models/qwen2_5_vl_hybrid.py
HybridQwen2_5_VLForConditionalGeneration ¶
Bases: Qwen2_5_VLForConditionalGeneration
Qwen2.5-VL with Hybrid SSM + Sliding-Window Attention.
This model extends Qwen2_5_VLForConditionalGeneration to use hybrid attention in the language model backbone. The vision encoder remains unchanged, while the text decoder uses HybridAttentionLayer for improved memory efficiency on long video/image contexts.
To enable hybrid attention, set use_hybrid_attention: true in the model's config or via override:
--override-neuron-config '{"use_hybrid_attention": true}'
The hybrid attention combines: 1. Sliding-window KV cache for local context 2. SSM (State Space Model) for history/long-range dependencies
Source code in vllm/model_executor/models/qwen2_5_vl_hybrid.py
288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 | |
is_multimodal_pruning_enabled instance-attribute ¶
language_model instance-attribute ¶
language_model = HybridQwen2ForCausalLM(
vllm_config=vllm_config,
prefix=maybe_prefix(prefix, "language_model"),
)
make_empty_intermediate_tensors instance-attribute ¶
visual instance-attribute ¶
visual = Qwen2_5_VisionTransformer(
vision_config=vision_config,
norm_eps=getattr(config, "rms_norm_eps", 1e-06),
quant_config=quant_config,
prefix=maybe_prefix(prefix, "visual"),
use_data_parallel=use_data_parallel,
attn_backend_override=attn_backend_override,
)
__init__ ¶
__init__(*, vllm_config: VllmConfig, prefix: str = '')