vllm.model_executor.models.llama_hybrid ¶
LLaMA model with optional Hybrid SSM + Sliding-Window Attention support.
This module extends the standard LLaMA model to optionally use HybridAttentionLayer, which combines sliding-window KV cache attention with an SSM history branch for improved memory efficiency on long contexts.
To enable hybrid attention, set use_hybrid_attention: true in the model's HuggingFace config or pass it via config override.
HybridLlamaAttention ¶
Bases: Module
LLaMA attention that can use either standard or hybrid attention.
When use_hybrid_attention is True in the config, this module uses HybridAttentionLayer which combines sliding-window KV cache with an SSM history branch. Otherwise, it falls back to standard Attention.
Source code in vllm/model_executor/models/llama_hybrid.py
37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 | |
attn instance-attribute ¶
attn = HybridAttentionLayer(
num_heads=num_heads,
head_size=head_dim,
scale=scaling,
num_kv_heads=num_kv_heads,
ssm_state_size=ssm_state_size,
ssm_conv_kernel_size=ssm_conv_kernel_size,
ssm_intermediate_size=ssm_intermediate_size,
cache_config=cache_config,
prefix=f"{prefix}.attn",
per_layer_sliding_window=sliding_window,
)
llama_4_scaling_original_max_position_embeddings instance-attribute ¶
llama_4_scaling_original_max_position_embeddings = (
llama_4_scaling_config[
"original_max_position_embeddings"
]
)
o_proj instance-attribute ¶
o_proj = RowParallelLinear(
input_size=total_num_heads * head_dim,
output_size=hidden_size,
bias=bias_o_proj,
quant_config=quant_config,
prefix=f"{prefix}.o_proj",
)
partial_rotary_factor instance-attribute ¶
partial_rotary_factor = getattr(
config, "partial_rotary_factor", 1
)
qkv_proj instance-attribute ¶
qkv_proj = QKVParallelLinear(
hidden_size=hidden_size,
head_size=head_dim,
total_num_heads=total_num_heads,
total_num_kv_heads=total_num_kv_heads,
bias=bias,
quant_config=quant_config,
prefix=f"{prefix}.qkv_proj",
)
__init__ ¶
__init__(
config: LlamaConfig,
hidden_size: int,
num_heads: int,
num_kv_heads: int,
max_position_embeddings: int = 8192,
quant_config: QuantizationConfig | None = None,
bias: bool = False,
bias_o_proj: bool = False,
cache_config: CacheConfig | None = None,
prefix: str = "",
attn_type: str = DECODER,
use_hybrid_attention: bool = False,
) -> None
Source code in vllm/model_executor/models/llama_hybrid.py
45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 | |
_get_llama_4_attn_scale ¶
Source code in vllm/model_executor/models/llama_hybrid.py
_init_rotary_emb ¶
_init_rotary_emb(
config: LlamaConfig,
quant_config: QuantizationConfig | None,
) -> None
Source code in vllm/model_executor/models/llama_hybrid.py
forward ¶
Source code in vllm/model_executor/models/llama_hybrid.py
HybridLlamaDecoderLayer ¶
Bases: LlamaDecoderLayer
LLaMA decoder layer with optional hybrid attention support.
Source code in vllm/model_executor/models/llama_hybrid.py
mlp instance-attribute ¶
mlp = LlamaMLP(
hidden_size=hidden_size,
intermediate_size=intermediate_size,
hidden_act=hidden_act,
quant_config=quant_config,
bias=getattr(config, "mlp_bias", False),
prefix=f"{prefix}.mlp",
)
post_attention_layernorm instance-attribute ¶
post_attention_layernorm = RMSNorm(
hidden_size, eps=rms_norm_eps
)
self_attn instance-attribute ¶
self_attn = HybridLlamaAttention(
config=config,
hidden_size=hidden_size,
num_heads=num_attention_heads,
num_kv_heads=getattr(
config, "num_key_value_heads", num_attention_heads
),
max_position_embeddings=max_position_embeddings,
quant_config=quant_config,
bias=attention_bias,
bias_o_proj=bias_o_proj,
cache_config=cache_config,
prefix=f"{prefix}.self_attn",
attn_type=attn_type,
use_hybrid_attention=use_hybrid_attention,
)
__init__ ¶
__init__(
vllm_config: VllmConfig,
prefix: str = "",
config: LlamaConfig | None = None,
) -> None
Source code in vllm/model_executor/models/llama_hybrid.py
HybridLlamaForCausalLM ¶
Bases: LlamaForCausalLM
LLaMA for causal LM with optional hybrid attention.
This model can be loaded with standard LLaMA weights. To enable hybrid attention, set use_hybrid_attention: true in the model config or via:
--override-neuron-config '{"use_hybrid_attention": true}'
The hybrid attention combines sliding-window KV cache with an SSM history branch for improved memory efficiency on long context sequences.
Source code in vllm/model_executor/models/llama_hybrid.py
__init__ ¶
__init__(*, vllm_config: VllmConfig, prefix: str = '')
Source code in vllm/model_executor/models/llama_hybrid.py
_init_model ¶
_init_model(
vllm_config: VllmConfig,
prefix: str = "",
layer_type: type[Module] = HybridLlamaDecoderLayer,
)
load_weights ¶
Source code in vllm/model_executor/models/llama_hybrid.py
HybridLlamaModel ¶
Bases: LlamaModel
LLaMA model with hybrid attention layer support.
Source code in vllm/model_executor/models/llama_hybrid.py
__init__ ¶
__init__(*, vllm_config: VllmConfig, prefix: str = '')